Test problems for 2022 EUV code comparison

LLNL-PRES-######

Last year:

- specified by $T_e = T_i$, ρ
- radiation field specified by T_r

T _e	10, 15, 20, 25, 30, 35, 40, 45, 50	
ρ	0.0002, 0.002, 0.02	
T _r	0, 20, 40	

This year:

- specified by $T_e = T_i$, ρ
- $T_r = 0$
- Focus on effects of autoionization (AI) and dielectronic recombination (DR)
- Bandpass will remain at [13.15,13.85] nm

T _e	10, 15, 20, 25, 30, 35, 40, 45, 50	
ρ	0.0002, 0.002, 0.02	
AI / DR	1 (yes), 0 (no)	

We will again use Yu. Ralchenko's database for displaying and comparing data

Problem 2 – matching experimental spectra

- Two spectra and experiment descriptions to be provided case SnS1: EBIT spectrum case SnS2: LPP spectrum
- The goal is to match the (normalized) experimental spectrum with a computed spectrum produced by a specified set of conditions
- The conditions / produced spectrum are <u>not</u> restricted to be uniform or optically thin (but are restricted to be steady-state). Feel free to invoke other physical processes (that cannot immediately be ruled out) to help match the spectrum.
- If multiple conditions are used, submit (at least) one representative set of conditions plus a listing of the multiple sets.
- Please submit a brief description of what assumptions were made

Problem 2 will be using the database for displaying and comparing data

Problem 3 – time-dependent laser absorption in Sn plasma

- Plasma specifications are the same as last year
- Time evolution includes inverse bremsstrahlung absorption and time-dependent atomic kinetics, and assumes T_e=T_i at all times
- Other physics processes can now be included: thermal conduction [C], radiation transport [R], hydrodynamics[H]
- Requested options are:

conduction + radiation transport S = CR

conduction + radiation transport + hydrodynamics S = CRH

ID	TDL[S]1	TDL[S]2	TDL[<mark>S</mark>]3
λ	1.064 μm	1.88 µm	10.6 µm
ρο	0.03 g/cm ³	0.01 g/cm ³	0.0003 g/cm ³
X	10. µm	100. μm	1000. µm
Р	$5 x 10^{10} W/cm^2$	$5x10^{10}$ W/cm ²	10^{10}W/cm^2
Δt	0.4 ns	0.4 ns	4.0 ns

Additional information and questions

- Submission deadline for <u>Problems 1, 2</u>: October 3
- Submission deadline for <u>Problem 3</u> : October 10

Comments and Questions?

